OPEN MOTE B

Open Mote B User Guide:
Preface

This User Guide is been implemented by Boot & Work, S.L. working under the name Industrial Shields.

Purpose of the manual

The information contained in this manual can be used as a reference to operating, to functions, and to the technical data of the signal modules, power supply modules and interface modules.

Intended Audience

This User Guide is intended for the following audience:

- Persons in charge of introducing automation devices.
- Persons who design automation systems.
- Persons who install or connect automation devices.
- Persons who manage working automation installation.

Warnings:

- Unused pins should not be connected. Ignoring the directive may damage the controller.
- Improper use of this product may severely damage the controller.
- Refer to the controller’s User Guide regarding wiring considerations.
- Before using this product, it is the responsibility of the user to read the product’s User Guide and all accompanying documentation.

Advertisements:

- Les broches non utilisées ne doivent pas être connectées. Ignorer la directive peut endommager le contrôleur.
- Une utilisation incorrecte de ce produit peut endommager gravement le contrôleur.
- Avant d’utiliser ce produit, il incombe à l’utilisateur de lire le Guide de l’utilisateur du produit et la documentation qui l’accompagne.
Application Considerations and Warranty

Read and Understand this Manual

Please read and understand this manual before using the product. Please consult your comments or questions to Industrial Shields before using the product.

Application Consideration

THE PRODUCTS CONTAINED IN THIS DOCUMENT ARE NOT SAFETY RATED. THEY SHOULD NOT BE RELIED UPON AS A SAFETY COMPONENT OR PROTECTIVE DEVICE FOR ENSURING SAFETY OF PERSONS, AS THEY ARE NOT RATED OR DESIGNED FOR SUCH PURPOSES.

Please know and observe all prohibitions of use applicable to the products.

FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, NEVER USE THE INDUSTRIAL SHIELDS PRODUCTS.

NEVER USE THE INDUSTRIAL SHIELDS PRODUCTS BEFORE THEY ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Industrial Shields shall not be responsible for conformity with any codes, regulations or standards that apply to the combination of products in the customer’s application or use of the product.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses may be suitable for the products:

- Systems, machines, and equipment that could present a risk to life or property.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installation subject to separate industry or government regulations.
- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this document.

At the customer’s request, INDUSTRIAL SHIELDS will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the system, machine, end product, or other application or use.
Disclaimers

Weights and Dimensions

Dimensions and weights are nominal and they are not used for manufacturing purposes, even when tolerances are shown.

Performance Data

The performance data given in this manual is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of INDUSTRIAL SHIELDS’s test conditions, and the users most correlate it to actual application requirements. Actual performance is subject to the INDUSTRIAL SHIELDS Warranty and Limitations of Liability.

Change in Specifications

Product specifications and accessories may be changed at any time based on improvements and other reasons.

It is our practice to change model numbers when features are changed, or published ratings or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your INDUSTRIAL SHIELDS representative at any time to confirm actual specifications of purchased products.

Errors and Omissions

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.
Warranty and Limitations of Liability

Warranty

Industrial Shields’s exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by Industrial Shields.

INDUSTRIAL SHIELDS MAKES NO REPRESENTATION OR WARRANTY, EXPRESSED OR IMPLIED, REGARDING MERCHANABILITY, NON-INFRINGEMENT, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. INDUSTRIAL SHIELDS DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED

Limitations of Liability

INDUSTRIAL SHIELDS SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

IN NO EVENT SHALL INDUSTRIAL SHIELDS BE RESPONSIBLE FOR WARRANTY, REPAIR OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS INDUSTRIAL SHIELDS’S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.
Table of Contents

1 General Description Open Mote B product ... 9
1.1 Industrial Internet of Things development platform ... 9
2 Technical Specifications ... 9
2.1 Micro-Controller (Texas Instruments, CC2538) .. 9
2.2 Transceiver 1 (Texas Instruments, CC2538) ... 10
2.3 Transceiver 2 (ATMEL, AT86RF215) ... 10
3 Platform Characteristics .. 10
4 System overview .. 11
4.1 Texas Instruments CC2538 .. 11
5 Dimensions .. 14
6 Software .. 15
6.1 Preliminaries ... Error! Bookmark not defined.
6.2 Windows 10 ... 15
 6.2.1 Python 3.x .. 15
 6.2.2 GCC Compiler for ARM Embedded Processors ... 19
 6.2.3 GCC Compiler for ARM Embedded Processors ... 23
6.3 GNU/Linux .. 29
6.4 OpenMote .. 30
 6.4.1 Windows 10 ... 30
 6.4.2 GNU/Linux ... 33
 6.4.3 Blinking LED example .. 34
7 Revision Table ... 37
1 General Description Open Mote B product

1.1 Industrial Internet of Things development platform

The OpenMote B is the ultimate hardware development and prototyping platform for the Industrial Internet of Things (IIoT), specifically to researchers and developers working towards next-generation long-range and low-power wireless field area networks based on the IPv6 stack. It is built around the well-supported Texas Instruments CC2538 ARM-Cortex-M3 micro-controller, and it features simultaneous multi-band operation in the 2.4 GHz and 868/915MHz ISM bands with complete support for the latest IEEE 802.15.4 standards, including the MR-OFDM modulations of IEEE 802.15.4g-2012.

2 Technical Specifications

2.1 Micro-Controller (Texas Instruments, CC2538)

- **ARM Cortex-M3 with code pre-fetch**
 - Running at 16 MHz or 32 MHz
 - 32 Kbytes RAM
 - 512 Kbytes FLASH

- **On-chip peripherals:**
 - 4x general purpose, 1x sleep timer
 - 1x 12 bit ADC with 8 channels
 - 2x SPI, 2x UART, 1x I2C

- **Security hardware acceleration:**
 - AES-128/256/SHA2 encryption
 - ECC-128/256 secure key exchange

- **Low-power operation:**
 - Active mode: 7/13mA (16/32 MHz)
 - LPM1: 600uA (full retention, 4us wake-up)
 - LPM2: 1.3 uA (16 Kbyte RAM retention, 128us wake-up, wake-up from RTC)
 - LPM3: 0.4 uA (16 Kbyte RAM retention, 128us wake-up, wake-up from GPIO)
2.2 Transceiver 1 (Texas Instruments, CC2538)

- **Operates in the 2.4 GHz ISM band with support for IEEE 802.15.4-2006**
 - Modulation: OQPSK with DSSS
 - Data rate: 250 kbps
 - Receiver sensitivity: -97 dBm
 - Transmit power: 7 dBm
 - Transmit current: 24 mA at 0 dBm
 - Receive current: 20 mA

2.3 Transceiver 2 (ATMEL, AT86RF215)

- **Operates in the 868/915MHz and 2.4 GHz ISM bands with support for IEEE 802.15.4g-2012**
 - Modulation: MR-FSK/OFDM/O-QPSK
 - Data rate: 6.25 kbps to 2400 kbps
 - Receiver sensitivity: -123 dBm
 - Transmit power: 14.5dBm
 - Transmit current: 62 mA at 14 dBm
 - Receive current: 28 mA

3 Platform Characteristics

- **Human interfacing**: The main board includes 4 LEDs (Green, Yellow, Orange and Red) and a user button which are intended for debugging purposes. In addition, the main board also includes a reset button that allows to perform a hardware reset.

- **Serial communications**: The main board can communicate with a computer using a UART port on the CC2538. The solution is based on the FTDI FT2232H chip, a Serial-to-USB converter that allows to communicate with a computer using a standard UART port. In addition, the FTDI chip allows to program the CC2538 directly using the internal bootloader and the cc2538-bsl Python script.

- **Board expansion**: The main OpenMote-B board includes an expansion port (8 pins with 2.54 mm spacing) that can be used for debugging or to connect daughter boards, i.e., the OpenMote-B sensors board. The expansion board includes a VCC (2.5V) and a GND pin, as well as six configurable pins.

- **Extended security**: The main OpenMote-B board includes hardware-accelerated support for cryptographic functions using SHA2, AES-128/256, ECC-128/256 and RSA algorithms.
• **Antenna connectors**: The main board includes two SMA antenna connectors for the Sub-GHz and 2.4 GHz antennas. The Sub-GHz antenna connector is directly connected to the Sub-GHz radio on the AT86RF215. The 2.4 GHz antenna is multiplexed using an RF switch to the CC2558 and the AT86RF215 radio transceivers. The direction of the RF switch can be controlled using two CC2538 pins.

• **Power**: The main board can be powered from a USB port (5V) through an A male plug connector, or from two AA batteries (3V) located on the back of the board. The board features an auto-switching mechanism that selects the USB source whenever it is available and seamlessly transitions to the AA batteries when disconnected. Finally, the board includes an on/off button to disconnect the two AA batteries when not used.

• **Current sensing**: The main board includes two ports (3 pins with 2.54 mm spacing) to measure current consumption of the whole system during operation. The first port measures the current consumption of the CC2538 chip, whereas the second port measures the current consumption of the AT86RF215 chip.

• **JTAG port**: The main board includes a 10-pin ARM connector that allows to load and debug code using an external JTAG probe. The interface is compatible with the main toolchains: Code Composer Studio, IAR Embedded Workbench and ARM.

4 **System overview**

4.1 **Texas Instruments CC2538**

The Texas Instruments CC2538 is a wireless micro-controller SoC (System on Chip) targeted at high-performance applications. It combines a powerful ARM Cortex-M3 running at 32 MHz, with 32 Kbytes of RAM and 512 Kbytes of Flash, with a robust 2.4 GHz radio transceiver compatible with the IEEE 802.15.4 standard. In addition, the CC2538 includes various peripherals to interface the processor with other systems: 2x SPI, 2x UART, 1x I2C.
CC2538 Datasheet (http://www.ti.com/lit/gpn/cc2538)
CC2538 Errata (http://www.ti.com/lit/pdf/swrz045)
5 Dimensions

In mm

[Dimensions in millimeters diagram]
6 Software

This section is aimed at providing a starting point to run the main open-source software projects on the OpenMote-B hardware.

6.1 Preliminaries

To program the OpenMote-B boards with the various open source software projects it is necessary to have a working environment to build, upload, and debug the code for the ARM Cortex-M3 processor. It is possible to create a working environment with either Windows or Linux, as described next. Macintosh is known to work, but the former operating systems are preferred as they have been thoroughly tested.

Hence, the following steps show how to install the tools required to compile, run and debug embedded software on the OpenMote-B boards using either Windows 10 or Ubuntu 18.04 LTS. The process assumes that the user has a working installation of either operating system, either natively on their computer or in a virtual environment (i.e. VMWare Workstation or VirtualBox).

The tools that are required are:

- Python 3 with the SCons, PySerial and IntelHex packages
- GCC compiler for ARM Embedded Processors

6.2 Windows 10

6.2.1 Python 3.x

To install Python 3.x go to the official website and download the latest version¹.

<table>
<thead>
<tr>
<th>Python Releases for Windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latest Python 3 Release - Python 3.7.2</td>
</tr>
<tr>
<td>Latest Python 2 Release - Python 2.7.15</td>
</tr>
<tr>
<td>Python 3.7.2 - 2018-12-24</td>
</tr>
<tr>
<td>Download Windows x86 web-based installer</td>
</tr>
<tr>
<td>Download Windows x86 executable installer</td>
</tr>
<tr>
<td>Download Windows x86 embeddable zip file</td>
</tr>
<tr>
<td>Download Windows x86-64 web-based installer</td>
</tr>
<tr>
<td>Download Windows x86-64 executable installer</td>
</tr>
<tr>
<td>Download Windows x86-64 embeddable zip file</td>
</tr>
<tr>
<td>Download Windows help file</td>
</tr>
</tbody>
</table>

¹ https://www.python.org/downloads/windows/
Once downloaded execute the installer and follow the steps depicted in the next Figures. It is important that you install Python for all users and also that you add the directory to the system PATH.
Optional Features

- **Documentation**
 Installs the Python documentation file.

- **pip**
 Installs pip, which can download and install other Python packages.

- **tcl/tk and IDLE**
 Installs tcl/tk and the IDLE development environment.

- **Python test suite**
 Installs the standard library test suite.

- **py launcher**
 For all users (requires elevation)
 Installs the global 'py' launcher to make it easier to start Python.

Advanced Options

- **Install for all users**

- **Associate files with Python (requires the py launcher)**

- **Create shortcuts for installed applications**

- **Add Python to environment variables**

- **Precompile standard library**

- **Download debugging symbols**

- **Download debug binaries (requires VS 2015 or later)**

Customize install location:

```
C:\Python\Python37
```

Options:
- **Back**
- **Next**
- **Install**
- **Cancel**
Once Python 3.x is installed in your system you should be able to execute it by running the python command from a command line, i.e. Windows PowerShell. If the installation was successful you should see a terminal like the next image.

Once Python 3.x is installed you need to install the additional packages that are required to compile, load and debug code. As mentioned earlier, these packages are SCons, PySerial and IntelHex and they can be installed using pip, as shown in the next images.

- Pip install scons
- Pip install pyserial
- Pip install intelhex
6.2.2 GCC Compiler for ARM Embedded Processors

To install the GCC Compiler for ARM Embedded Processors go to the official website and download the latest version: 7-2017-q4-major².

Once downloaded execute the installer and follow the steps depicted in the next Figures. It is important that you add the install directory in the path environment.
Acuerdo de licencia
Por favor revise el acuerdo de licencia antes de instalar GNU Tools for ARM Embedded Processors 7-2017-q4-major 7 2017.

Presione Avanzar Página para ver el resto del acuerdo.

Contains code from project GNU Binutils (https://www.gnu.org/software/binutils/), GNU Debugger (https://www.gnu.org/software/gdb) under the following license(s).

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Nullsoft: Install System v07-Apr-2015.csv

Elegir lugar de instalación

Carpeta de Destino

[Seguro Files (x86) GNU Tools ARM Embedded] 7 2017-q4-major

Espacio requerido: 417,9MB
Espacio disponible: 49,6GB

Nullsoft: Install System v07-Apr-2015.csv
Once it is installed in your system you should be able to execute it by running the `arm-none-eabi-gcc.exe --version` command from a command line, i.e. Windows PowerShell. If the installation was successful you should see a terminal like the next image.
6.2.3 GCC Compiler for ARM Embedded Processors

https://git-scm.com/download/win
Git 2.20.1 Setup

Select Destination Location
Where should Git be installed?

Setup will install Git into the following folder.
To continue, click Next. If you would like to select a different folder, click Browse.

C:\Program Files\Git

At least 245.3 MB of free disk space is required.

https://gitforwindows.org/

< Back Next > Cancel

Git 2.20.1 Setup

Select Components
Which components should be installed?

Select the components you want to install; clear the components you do not want to install. Click Next when you are ready to continue.

- Additional icons
 - On the Desktop
- Windows Explorer integration
 - Git Bash Here
 - Git GUI Here
- Git LFS (Large File Support)
- Associate .git configuration files with the default text editor
- Associate .sh files to be run with Bash
- Use a TrueType font in all console windows
- Check daily for Git for Windows updates

Current selection requires at least 244.9 MB of disk space.

https://gitforwindows.org/

< Back Next > Cancel
Adjusting your PATH environment

How would you like to use Git from the command line?

- **Use Git from Git Bash only**

 This is the safest choice as your PATH will not be modified at all. You will only be able to use the Git command line tools from Git Bash.

- **Git from the command line and also from 3rd-party software**

 This option is considered safe as it only adds some minimal Git wrappers to your PATH to avoid cluttering your environment with optional Unix tools. You will be able to use Git from Git Bash, the Command Prompt and the Windows command prompt.

- **Use Git and optional Unix tools from the Command Prompt**

 Both Git and the optional Unix tools will be added to your PATH. **Warning:** This will override Windows tools like "find" and "sort". Only use this option if you understand the implications.

Choosing HTTPS transport backend

Which SSL/TLS library would you like Git to use for HTTPS connections?

- **Use the OpenSSL library**

 Server certificates will be validated using the ca-bundle.crt file.

- **Use the native Windows Secure Channel library**

 Server certificates will be validated using Windows Certificate Stores. This option also allows you to use your company's internal Root CA certificates distributed e.g. via Active Directory Domain Services.
Git 2.20.1 Setup

Configuring the line ending conversions
How should Git treat line endings in text files?

- Checkout Windows-style, commit Unix-style line endings
 Git will convert LF to CRLF when checking out text files. When committing
text files, CRLF will be converted to LF. For cross-platform projects,
this is the recommended setting on Windows ("core.autocrlf" is set to "true").

- Checkout as-is, commit Unix-style line endings
 Git will not perform any conversion when checking out text files. When
committing text files, CRLF will be converted to LF. For cross-platform projects,
this is the recommended setting on Unix ("core.autocrlf" is set to "input").

- Checkout as-is, commit as-is
 Git will not perform any conversions when checking out or committing
text files. Choosing this option is not recommended for cross-platform
projects ("core.autocrlf" is set to "false").

https://gitforwindows.org/

Git 2.20.1 Setup

Configuring the terminal emulator to use with Git Bash
Which terminal emulator do you want to use with your Git Bash?

- Use MntTTY (the default terminal of MSYS2)
 Git Bash will use MntTTY as terminal emulator, which sports a resizable window,
non-rectangular selections and a Unicode font. Windows console programs (such
as interactive Python) must be launched via “wimpy” to work in MntTTY.

- Use Windows’ default console window
 Git will use the default console window of Windows ("cmd.exe"), which works well
with Win32 console programs such as interactive Python or node.js, but has a
very limited default scroll-back, needs to be configured to use a Unicode font in
order to display non-ASCII characters correctly, and prior to Windows 10 its
window was not freely resizable and it only allowed rectangular text selections.

https://gitforwindows.org/
Git 2.20.1 Setup

Configuring extra options
Which features would you like to enable?

- [] Enable file system caching
 File system data will be read in bulk and cached in memory for certain operators ("core.fscache" is set to "true"). This provides a significant performance boost.

- [] Enable Git Credential Manager
 The [Git Credential Manager for Windows](https://gitforwindows.org/) provides secure Git credential storage for Windows, most notably multi-factor authentication support for Visual Studio Team Services and GitHub. (requires .NET framework v4.5.1 or later).

- [] Enable symbolic links
 Enable [symbolic links](https://gitforwindows.org/) (requires the SeCreateSymbolicLink permission). Please note that existing repositories are unaffected by this setting.

Git 2.20.1 Setup

Completing the Git Setup Wizard

Setup has finished installing Git on your computer. The application may be launched by selecting the installed shortcuts.

Click Finish to exit Setup.

- [] Launch Git Bash
- [] View Release Notes

Finish
6.3 GNU/Linux

The first step is installing the toolchain to compile C/C++ code for the ARM Cortex-M3 processor that is used in the Texas Instruments CC2538 micro-controller.

```
sudo add-apt-repository ppa:team-gcc-arm-embedded/ppa
```

```
sudo apt-get install gcc-arm-embedded
```

Once the toolchain is installed, we will also need some additional tools to be able to work with the source code.

```
sudo apt-get install build-essential git scons python-pip
```

Finally, we will also need to install some Python modules that will be needed

```
sudo pip install intelhex pyserial
```

Once all the software has been properly installed in the system we can proceed to program the Open Mote B module.
6.4 OpenMote

The next sub-sections will show how to compile and execute the default OpenMote firmware projects step-by-step with Windows 10 and Ubuntu 18.04 LTS.

6.4.1 Windows 10

The first step is to clone the OpenMote repository using git. To do so, type the following command:

```
PS C:\Users\Pere Tuset\Desktop> git clone https://peretu07@bitbucket.org/openmote/openmote-fw.git
Cloning into 'openmote-fw'...
remote: Counting objects: 7291, done.
remote: Compressing objects: 100% (1241/1241), done.
remote: Total 7291 (delta 708), reused 0 (delta 0)
Receiving objects: 100% (7291/7291), 3.40 MiB | 3.02 MiB/s, done.
Resolving deltas: 100% (4573/4573), done.
PS C:\Users\Pere Tuset\Desktop>
```

After the OpenMote repository has been cloned, you need to initialize the repository submodules by executing the following command:

```
Git submodule update --init --recursive
```

If the command is successful you should see a screen similar to the next one.
Once the initializations are made you can compile a project by the next command:

`scons compiler=gcc board=openmote-b project=freertos-cc2538 versbose=0`
Compiling platform\cc2538\cc2538_start-up_gcc.c
Installing build\openmote-b\platform\libplatform.a
Compiling sys\src\Buffer.cpp
Compiling sys\src\CriticalSection.cpp
Compiling sys\src\Crc16.cpp
Compiling sys\src\Hdce.cpp
Compiling sys\src\LedBlinker.cpp
Compiling sys\src\Mutex.cpp
Compiling sys\src\Rendezvous.cpp
Compiling sys\src\Scheduler.cpp
Compiling sys\src\Semaphore.cpp
Compiling sys\src\Serial.cpp
Compiling sys\src\Task.cpp
Archiving build\openmote-b\sys\libs\sys.a
Installing bin\openmote-b\libsys.a
Compiling projects\freertos-cc2538\src\main.c
arm-none-eabi-objcopy --output-target=ihex build\openmote-b\projects\freertos-cc2538\freertos-cc2538.elf build\openmote-b\projects\freertos-cc2538\freertos-cc2538.hex
arm-none-eabi-size build\openmote-b\projects\freertos-cc2538\freertos-cc2538.elf
data bss text data bss hex filename
14936 1852 6053 22861 594d build\openmote-b\projects\freertos-cc2538\freertos-cc2538.elf
scons done building targets
PS C:\Users\Pere Tuset\Desktop\openmote-fw>

Administrador de dispositivos
Archivo Acción Ver Ayuda
- Concentrador USB genérico
- Controlador de host de PCI e USB mejorado
- Controlador de host eXtensible Estandar USB 3.0 - 1.0 (Microsoft)
- Controlador de host PCI e USB estandar universal
- Dispositivo compuesto USB
- Dispositivo compuesto USB
- USB Serial Converter A
- USB Serial Converter B
- USB Serial Converter A
- USB Serial Converter B
- Controlesadores de sonido y video y dispositivos de juego
- Dispositivos de interfaz de usuario (HID)
- Dispositivos de software
- Dispositivos del sistema
- Entradas y salidas de audio
- Equipo
- Monitores
- Mouse y otros dispositivos señales
- Procesadores
- Puertos (COM y LPT)
- Puertos de comunicaciones (COM1)
- USB Serial Port (COM3)
- USB Serial Port (COM4)
- E/S Senosors
- E/S Tecados
- Unidades de disco
- Unidades de DVD o CD-ROM
6.4.2 GNU/Linux

The first step is to clone the OpenMote firmware repository from BitBucket using the following command:

```bash
git clone https://peretuset@bitbucket.org/openmote/openmote-fw.git
```

```
cd openmote-fw

git submodule update --init --recursive
```
After generating the driverlib for the Texas Instruments CC2538 micro-controller, you can return to the root directory using the `cd` command.

6.4.3 Blinking LED example

To test the build environment and the boards we will use the freertos-cc2538 project, which demonstrates using the FreeRTOS real-time operating system with the Texas Instruments CC2538 micro-controller on the OpenMote-B board. The code will be compiled with the gcc-arm-embedded toolchain. To compile the code issue the following command:

```
scons board=openmote-b project=freertos-cc2538 compiler=gcc verbose=0
```

The compile process for all the project modules will start, as displayed in the next figure.
If the process is correct the build system will display a successful message and will show the space occupied by the generated binary image, as depicted in the next figure.

Once the binary image has been generated, we can upload it to the OpenMote-B board using the bootloader and the cc2538-bsl Python script. To upload the firmware, issue the following command:

```
sudo scons board=openmote-b project=freertos-cct538 compiler=gcc verbose=0 bootload=/dev/ttyUSB1
```

Notice that the command must be prepended with “sudo”, as accessing the serial port in Linux requires super-user permissions.

If the process is successful, the build system will display a success message, as depicted in the next image, and the OpenMote-B should start working: the green LED should blink briefly (100 ms) every second (1000 ms) and the user button should toggle the red LED.
```
openmote@openmote:/Desktop/openmote-fw$ sudo scons board=openmote-b project=freertos-cc2538 compiler=gcc verbose=0 bootloader=/dev/ttyUSB1
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
arm-none-eabi-size build/openmote-b/projects/freertos-cc2538/freertos-cc2538
  text data bss dec  hex filename
  12664  2364  6129  21157 52a5 build/openmote-b/projects/freertos-cc2538
  /freertos-cc2538
OpenNoteCC2538_bootload(["build/openmote-b/projects/freertos-cc2538/freertos-cc2538.phonyupload"], ["build/openmote-b/projects/freertos-cc2538/freertos-cc2538.hex"])
Starting bootloading on /dev/ttyUSB1
Done bootloading on /dev/ttyUSB1
scons: done building targets.
```
7 Revision Table

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22/08/2019</td>
<td>First implementation</td>
</tr>
</tbody>
</table>

About Industrial Shields:

Address:
Fàbrica del Pont, 1-11
Sant Fruitós de Bages, 08272 (Barcelona)
Spain

Telephone:
(+34) 938 760 191 / (+34) 635 693 611

Mail:
info@industrialshields.com