
Smart Tuya Cloud integration with Raspberry PLC
with Python

v. 2021-1

Shrivastava Amil

April 28, 2021

Introduction

Tuya smart is a global IoT platform that is enabling brands worldwide to produce
Domotics and AI solutions and enabling OEMs, retailers and developers to come up
with their own unique solutions and products using a very vast range of Tuya smart
compatible electronics.

This manual will walk you through the process of connecting and using Tuya com-
patible WIFI Smart Devices (Plugs, Switches, lights etc.) with Industrial Raspberry
PLC using python for AI and Domotics purposes.

1

Contents
1 Overview of the hardware used 3

1.1 Prerequisites . 3
1.2 LoraTap Curtain Switch Module (2nd Gen.) 3
1.3 Industrial Raspberry PLC . 4

2 Module network Configuration 4
2.1 Smart life App Set up . 4
2.2 Module cloud registration . 5

3 Tuya Development Environment Set up 10
3.1 Sign up and project creation . 10
3.2 Adding API products . 11

4 Industrial PLC configuration and Code 13
4.1 Installing TinyTuya libraries . 13
4.2 Commands . 13

4.2.1 Scan the network for online Tuya devices 13
4.2.2 Setup Wizard to acquire the required parameters 13

4.3 Programming with TinyTuya . 14
4.4 TinyTuya Error Codes . 16
4.5 Industrial PLC Code . 16
4.6 Other useful links. 18

2

1 Overview of the hardware used

1.1 Prerequisites
Before starting with this manual, the following requirements need to be fulfilled:

1. An Active internet connection to communicate with the cloud

2. A smart phone with Smart Life application

3. Tuya Smart compatible device

4. Industrial PLC that supports Python

5. For registering the tuya device to the network and the cloud, The smart phone and the
device need to be in the same network. For controlling, the PLC and the device have to
be in the same network where the device has been registered.

1.2 LoraTap Curtain Switch Module (2nd Gen.)

Figure 1: Loratap 2nd Gen. Curtain Switch

2nd generation LoraTap Curtain module is a wireless 4 wired curtain motor kinetic switch
with a competitive price. It is compatible with Tuya smart life cloud services and Smart life
mobile application. Its technical specifications and other details can be found on this link.

3

1.3 Industrial Raspberry PLC

Figure 2: Industrial Raspberry PLC.

Industrial Raspberry PLC is one of the most popular PLCs in Industrial Shields’ line of PLCs.
With the capability and flexibility of a Raspberry Pi and the Industrial compatibility and
endurance with Industrial shields, this PLC is proving to be very versatile with its applica-
tions in different fields. The Industrial Raspberry PLC runs on the latest version of raspbian
which is a debian based open source operating system.

More details about Industrial Raspberry PLC can be found on this link.

2 Module network Configuration
To run the module remotely in a network, the module needs to be first registered in Tuya
cloud. This can only be done using the Smart life or Tuya mobile application. In this section,
we will go through the steps to accomplish this requirement.

2.1 Smart life App Set up
1. Download the mobile application using either of the following two links:

• https://itunes.apple.com/us/app/smart-life-smart-living/id1115101477?mt=
8

• https://play.google.com/store/apps/details?id=com.tuya.smartlife&hl=en

2. Create an account or Log in if you already have an account.

4

https://itunes.apple.com/us/app/smart-life-smart-living/id1115101477?mt=8
https://itunes.apple.com/us/app/smart-life-smart-living/id1115101477?mt=8
https://play.google.com/store/apps/details?id=com.tuya.smartlife&hl=en

2.2 Module cloud registration
1. On the top right corner of the Home tab, tap on the add button to add new module or

Add a device by tapping the "Add Device" button.

Figure 3: Adding a new device

5

2. Choose the appropriate device in this step. In our case we choose WIFI curtain Switch.

Figure 4: Choosing the device type

6

3. Follow the instructions on the screen. Usually it will ask you to press and hold a button
on the module, or repeatedly press a button on the module.

Figure 5: Follow the instructions shown on your app screen

7

4. The module will automatically register itself on the cloud

Figure 6: Device getting registered on the cloud automatically

8

5. Test the module using the controls of the application

Figure 7: App Controls

Once done, the module can be used from any network

9

3 Tuya Development Environment Set up
In order to be able to be develop solutions with the module and control it via your own
applications, a developer’s account is needed in the Tuya’s IoT developer’s Platform.

3.1 Sign up and project creation
1. Go to this link and sign up a developer’s account

2. Go to cloud and create a project and fill up the required details

Figure 8: Create Project

3. Take note of Access ID and Access Secret. We will need it in the next steps.

Figure 9: Project Dashboard

10

https://iot.tuya.com/

3.2 Adding API products
1. Go to API Products and subscribe to the following. It is free and does not require any

form of payment at the time of writing this manual.

Figure 10: API Subscriptions

You will have to authorize them to be linked with your project.

2. Select your project and go to the API tab to link the APIs with your project.

Figure 11: Authorizing APIs

11

3. Once, that is done, click on the Link Devices option as shown, followed by Link devices
by App account.

Figure 12: Linking devices by app account

4. Click on the Add App account option and scan the QR code with your mobile application.

5. You can now click on Device List tab, choose App account and your region from the
drop down list and your devices linked with your app account should be listed below.

Figure 13: Create Project

12

4 Industrial PLC configuration and Code
Controlling and monitoring Tuya devices on a network requires the following parameters:

• IP - The network address (IPv4) of the device e.g. 10.0.1.100

• ID - The unique identifier for the Tuya device

• VERSION - The Tuya protocol version used (3.1 or 3.3)

• LOCAL_KEY - The security key created to encrypt and decrypt communication. De-
vices running the latest protocol version 3.3 (e.g. Firmware 1.0.5 or above) will require
a device_KEY to read the status. Both 3.1 and 3.3 devices will require a device LO-
CAL_KEY to control the device.
The next few sections will explain how to obtain these parameters.

4.1 Installing TinyTuya libraries
The TinyTuya library needs to be installed in the PLC via command line interface to be
able to use its features for our applications. To install it run the following commands:

Install PIP
$ sudo apt-get install python-crypto python-pip

Install TinyTuya
$ python -m pip install tinytuya

4.2 Commands
4.2.1 Scan the network for online Tuya devices

TinyTuya has a built in network scanner that can be used to find Tuya Devices on your
local network. It will show IP, ID and VERSION for each device.

$ python -m tinytuya scan

4.2.2 Setup Wizard to acquire the required parameters

TinyTuya has a built in setup Wizard that uses the Tuya IoT Cloud Platform to generate a
JSON list (devices.json) of all your registered devices. This includes the secret LOCAL_KEY
as well as the Name of each device.

$ python -m tinytuya wizard
use -nocolor for non-ANSI-color terminals

• The Wizard will ask for the API ID key, API Secret, API Region (us, eu, cn or in) from
your Tuya IoT project mentioned in step 3 of section 3.1 . It will also ask for a sample
Device ID. Use one from the scanning step in section 4.2.1 or found in the Device List
on your Tuya IoT project.

13

• The Wizard will poll the Tuya IoT Cloud Platform and print a JSON list of all your
registered devices with the "name", "id" and "key" of your registered device(s). The "key"s
in this list are the Devices’ LOCAL_KEY you will use to access your device.

• In addition to displaying the list of devices, Wizard will create a local file devices.json.
TinyTuya will use this file to provide additional details to scan results from tinytuya.scanDevices()
or when running python -m tinytuya to scan your local network.

• The Wizard will ask if you want to poll all the devices. If you do, it will display the status
of all devices on records and create a snapshot.json file with the results.

Re-pairing or Re-setting the device will reset the LOCAL_KEY and will need to repeat the
above mentioned procedure to obtain the key.

4.3 Programming with TinyTuya
Creating a device handle for the device we want to read or control:

import tinytuya

d = tinytuya.OutletDevice(’DEVICE_ID_HERE’,\
’IP_ADDRESS_HERE’, ’LOCAL_KEY_HERE’)

d.set_version(3.3)
data = d.status()
print(’set_status() result %r’ % data)

TinyTuya Module Classes and Functions

Global Functions
devices = scanDevices() # returns dictionary of devices

found on local network
scan() # interactive scan of local

network
wizard() # interactive setup wizard

Classes
OutletDevice(dev_id, address, local_key=None,

dev_type=’default’)
CoverDevice(dev_id, address, local_key=None, dev_type=’default’)
BulbDevice(dev_id, address, local_key=None, dev_type=’default’)

dev_id (str): Device ID e.g. 01234567891234567890
address (str): Device Network IP Address e.g. 10.0.1.99 or

0.0.0.0 to auto-find
local_key (str, optional): The encryption key. Defaults to

None.
dev_type (str): Device type for payload options (see below)

Functions:

json = status() # returns json payload
set_version(version) # 3.1 [default] or 3.3

14

set_socketPersistent(False/True) # False [default] or True
set_socketNODELAY(False/True) # False or True [default]
set_socketRetryLimit(integer) # retry count limit [default 5]
set_socketTimeout(self, s) # set connection timeout in

seconds [default 5]
set_dpsUsed(dpsUsed) # set data points (DPs)
set_retry(retry=True) # retry if response payload is

truncated
set_status(on, switch=1) # Set status of the device to

’on’ or ’off’ (bool)
set_value(index, value) # Set int value of any index.
heartbeat() # Send heartbeat to device
updatedps(index=[1]) # Send updatedps command to

device
turn_on(switch=1) # Turn on device / switch #
turn_off(switch=1) # Turn off
set_timer(num_secs) # Set timer for num_secs
set_debug(toggle, color) # Activate verbose debugging

output
set_sendWait(num_secs) # Seconds to wait after sending

for response
detect_available_dps() # Return list of DPS available

from device
generate_payload(command, data) # Generate TuyaMessage payload

for command with data
send(payload) # Send payload to device (do not

wait for response)
receive() # Receive payload from device

OutletDevice:
set_dimmer(percentage):

CoverDevice:
open_cover(switch=1):
close_cover(switch=1):
stop_cover(switch=1):

BulbDevice
set_colour(r, g, b):
set_hsv(h, s, v):
set_white(brightness, colourtemp):
set_white_percentage(brightness=100, colourtemp=0):
set_brightness(brightness):
set_brightness_percentage(brightness=100):
set_colourtemp(colourtemp):
set_colourtemp_percentage(colourtemp=100):
set_scene(scene): # 1=nature, 3=rave, 4=rainbow
set_mode(mode=’white’): # white, colour, scene, music
result = brightness():
result = colourtemp():
(r, g, b) = colour_rgb():

15

(h,s,v) = colour_hsv()
result = state():

4.4 TinyTuya Error Codes
Starting with v1.2.0 TinyTuya functions will return error details in the JSON data responses
instead of raising exceptions. The format for this response:

{ "Error":"Invalid JSON Payload", "Err":"900","Payload":"{Tuya
Message}" }’

The "Err" number will be one of these:

• 900 (ERR_JSON) - Invalid JSON Response from Device

• 901 (ERR_CONNECT) - Network Error: Unable to Connect

• 902 (ERR_TIMEOUT) - Timeout Waiting for Device

• 903 (ERR_RANGE) - Specified Value Out of Range

• 904 (ERR_PAYLOAD) - Unexpected Payload from Device

• 905 (ERR_OFFLINE) - Network Error: Device Unreachable

• 906 (ERR_STATE) - Device in Unknown State

• 907 (ERR_FUNCTION) - Function Not Supported by Device

4.5 Industrial PLC Code
For ease of understanding and demonstration, we will run an application on Industrial rasp-
berry PLC that will change the status of the Tuya device on inputting the appropriate input
via the CLI. In our case, we are working with a curtain switch, which has a total of 3 states

• Open - 1

• Pause - 2

• Close - 3

This code can be modified and have automated responses or different trigger methods
like counters, timers , external buttons etc.

Code

import tinytuya
import time
import os

#Device details
d=tinytuya.OutletDevice(’0665207370039f108cc5’,’192.168.177.115’,’921b031edd016258’)
d.set_version(3.3)
data= d.status()

16

print(’Dictionary %r’ %data)
print(’State (bool,true is ON) %r’ %data [’dps’][’1’])

switch_state= data[’dps’][’1’]
print("We are going to do some testing")
time.sleep(1)

ip=input("Type 1-- Open ;2-- Pause ;3-- Close : ")

while True:

inpu1= int(ip)

if inpu1 == 1:
print("Switch Open")
data= d.set_status(1,1) # Open
print("status changed %r" %data)

#In built LEDs
os.system("sudo ./set-digital-output Q0.0 1 && sudo

./set-digital-output Q0.1 0 && sudo ./set-digital-output
Q0.2 0")

ip=input("Type 1-- Open ;2-- Pause ;3-- Close : ")

elif inpu1 == 2:
print("Switch Pause")
data= d.set_status(2,1) # Pause
os.system("sudo ./set-digital-output Q0.0 0 && sudo

./set-digital-output Q0.1 1 && sudo ./set-digital-output
Q0.2 0")

print("status changed %r" %data)
ip=input("Type 1-- Open ;2-- Pause ;3-- Close : ")

elif inpu1 == 3 :
print("Switch close")
data= d.set_status(3,1) # Close
os.system("sudo ./set-digital-output Q0.0 0 && sudo

./set-digital-output Q0.1 0 && sudo ./set-digital-output
Q0.2 1")

print("status changed %r" %data)
ip=input("Type 1-- Open ;2-- Pause ;3-- Close : ")

else :
print("Wrong input; Testing ended")

#######################End##########################

For more information or troubleshooting, please visit the links in the References section.

17

To use the inputs and outputs of the PLC in the python code, the related files must be in the
same folder as the python code. These files are found in the test folder. The links to the tutorial
of using inputs and outputs of Industrial raspberry PLC are in the next section.

4.6 Other useful links.
• How to access the Raspberry Pi industrial

• Basics about digital inputs of a Raspberry PLC

• Basics about digital outputs of Raspberry PLC

• Basics about analog inputs of Raspberry PLC

• Basics about Raspberry Pi PLC analog outputs

• How to connect industrial Raspberry PLC to Wi-Fi

References
[1] https://developer.tuya.com/en/docs/iot

[2] https://pypi.org/project/tinytuya/

18

https://www.industrialshields.com/blog/arduino-industrial-1/post/how-to-access-the-raspberry-pi-industrial-plc-240
https://www.industrialshields.com/blog/arduino-industrial-1/post/basics-about-digital-inputs-of-a-raspberry-plc-268
https://www.industrialshields.com/blog/arduino-industrial-1/post/basics-about-digital-outputs-of-raspberry-plc-266
https://www.industrialshields.com/blog/arduino-industrial-1/post/basics-about-analog-inputs-of-raspberry-plc-269
https://www.industrialshields.com/blog/arduino-industrial-1/post/basics-about-raspberry-pi-plc-analog-outputs-267
https://www.industrialshields.com/blog/arduino-industrial-1/post/how-to-connect-industrial-raspberry-plc-to-wi-fi-279
https://developer.tuya.com/en/docs/iot
https://pypi.org/project/tinytuya/

	Overview of the hardware used
	Prerequisites
	LoraTap Curtain Switch Module (2nd Gen.)
	Industrial Raspberry PLC

	Module network Configuration
	Smart life App Set up
	Module cloud registration

	Tuya Development Environment Set up
	Sign up and project creation
	Adding API products

	Industrial PLC configuration and Code
	Installing TinyTuya libraries
	Commands
	Scan the network for online Tuya devices
	Setup Wizard to acquire the required parameters

	Programming with TinyTuya
	TinyTuya Error Codes
	 Industrial PLC Code
	Other useful links.

